.

Saturday, February 16, 2019

Revolutionary QM212 :: science

Revolutionary QM212Abstract A brand-new process in bio-chemistry involves the manipulation of molecules to defeat diseases, viruses, chemical warfare, and to reduce the comprise of bio-chemical engineering. This new process is refined in that the researcher utilizes new information processing arrangement technology to model the behavior of certain molecules to insert a time slot for discarding unwanted contrasted objects. These unwanted foreign objects are discarded by fixing the slot to fit the objects. This slot can be customized, finished manipulation and modelling, to fit many different objects. Therefore, objects such as viruses, poisonings, or bacteria, could be jetted out of ones body. This aspect could one day benefit millions of mountain around the world. Chemical Process Teams from universities successfully inserted instructions for building an anti-fluorescein antibody in the DNA of bacteria. This antibody binds with fluorescein molecules. Into this chunk of materia l, they inserted instructions for buildin g a metal-ion binding megabucks. They discovered where to put this slot by simulating the antibody on a long computer. The resulting product revealed an anti-fluorescein antibody which binds to metal ions. After physically inserting the genetic code in to E. coli. bacteria, the researchers had a large batch of a new compound which they named QM212. When strapper was added to this new batch, it binded with the metal-ion binding sight, decreasing the fluorescent emissions. Applications The human immune system already uses similar antibodies for similar tasks. Natural antibodies conform to the shape of foreign bodies and bind to the outer surface. They then release enzymes to break down the substance. In the experiment, c opper acted as the foreign body while QM212 was the antibody. One cover of this process could be used by the military. The military, utilizing bio-chemical tools, could engineer an antibody which binds with warmheartedne ss turgidity and splits each molecule. This could be accomplished by first of all searching t he Brookhaven database for a proper antibody. Then, using large mainframe computer computers, one can manipulate models of the antibody and create a binding sight for the nerve gas molecules. Then, the soldier would inject himself with the antibodies when h e is nerve gased. Another application of this process could be used by bio chemists in fighting the AIDS epidemic. If an antibody was engineered to conform to the AIDS virus, it could break it in half and dispose of it. Finally, using E. coli., synthetic antibodies replacing current vaccines could be mount produced.

No comments:

Post a Comment